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Abstract. We analyze the structure of random graphs generated by the geograph-
ical threshold model. The model is a generalization of random geometric graphs.
Nodes are distributed in space, and edges are assigned according to a thresh-
old function involving the distance between nodes as well as randomly chosen
node weights. We show how the degree distribution, percolation and connectiv-
ity transitions, clustering coefficient and diameter relate to the threshold value
and weight distribution. We give bounds on the threshold value guaranteeing the
existence and absence of a giant component, connectivity and disconnectivity of
the graph, and small diameter. Finally, we consider the clustering coefficient for
nodes with a given degree l, finding that its scaling is very close to 1/l when the
node weights are exponentially distributed.

Key words: random graph, geographical threshold graph, giant component, con-
nectivity, clustering coefficient.

1 Introduction

Large networks such as the Internet, World Wide Web, phone call graphs, infections
disease contacts, and financial transactions have provided new challenges for modeling
and analysis [Bon05]. For example, Web graphs may have billions of nodes and edges,
which implies that the analysis on these graphs, i.e., processing and extracting infor-
mation on these large sets of data, is “hard” [APR02]. Extensive theoretical and experi-
mental research has been done in web-graph modeling. Early measurements suggested
that the Internet exhibits a power-law degree distribution [FFF99] and that the web
graph also follows a power-law distribution in in- and out-degree of links [KKR+99].
Modeling approaches using random graphs have attempted to capture both the structure
and dynamics of the web graph [KRR+00,BA99,ACL00,BRST01,CF01].

The study of random graphs began with the introduction of the uniform random
graph model [ER59,ER60]. Since then many other models have been proposed to bet-
ter capture the structure seen in real-world networks [Bol01,Dur06]. Some examples
are random graph models with a given or expected degree sequence [MR95,CL06],
threshold graphs [MP95,HSS06] with edges created according to a function of node
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weights, or graphs with an underlying geometric structure, such as random geometric
graphs [Pen03]. In this paper we study another recent addition to this collection of mod-
els: geographical threshold graphs (GTGs), a static model for networks that includes
both geometric information and node weight information.

GTGs combine the geometric structure of random geometric graphs with node prop-
erties similar to threshold graphs. The properties of this graph ensemble have only re-
cently begun to be studied [MMK05,BHP07,BK07]. One motivation for analyzing this
model is that many real networks need to be studied by using a “richer” stochastic model
than random geometric graphs. The GTG model has been applied, for instance, in the
study of wireless ad hoc networks in systems where the wireless nodes have different
communication ranges or battery power [BK07]. In that case, the weights represent
available power or bandwidth of a wireless node. By varying the weights, properties
such as the diameter or degree distribution can be tuned. Other possible applications of
GTGs that are yet to be explored are epidemic modeling, where the weights could rep-
resent susceptibility or infectivity of an individual, or social networks where the weights
might be related to affinity or attractiveness.

2 Geographical Threshold Graph Model

The GTG model is constructed from of a set of n nodes placed independently and uni-
formly at random in a volume in Rd . A non-negative weight wi, taken randomly and
independently from a probability distribution function f (w) : R+

0 → R+
0 , is assigned

to each node vi for i ∈ [n]. Let F(x) =
R x

0 f (w)dw be the cumulative density function.
For two nodes vi and v j at distance r, the edge (i, j) exists if and only if the following
connectivity relation is satisfied:

G(wi,w j)h(r)≥ θn , (1)

where θn is a given threshold parameter that depends on the size of the network. The
function h(r) specifies the connection probability as a function of distance and is as-
sumed to be decreasing in r. In the following we take h(r) = r−β, for some positive β,
which is typical for e.g., the path-loss model in wireless networks [BK07]. The inter-
action strength between nodes G(wi,w j) is typically taken to be symmetric (to produce
an undirected graph) and either multiplicatively or additively separable, i.e., in the form
of G(wi,w j) = g(wi)g(w j) or G(wi,w j) = g(wi)+g(w j).

Some basic results have already been shown. For the case of uniformly distributed
nodes over a unit space it has been shown [MMK05,BK07] that the expected degree of
a node with weight w is

E[k(w)] =
nπd/2

Γ(d/2+1)

Z
w′

f (w′)
(
h−1(θn/G(w,w′))

)ddw′, (2)

where h−1 is the inverse of h. The degree distribution has been studied for specific
weight distribution functions f (w) [MMK05]. In both the multiplicative and additive
case of G(w,w′), questions of diameter, connectivity, and topology control have been
addressed [BK07].
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Here we restrict ourselves to the case of g(w) = w, β = 2, and nodes distributed
uniformly over a two-dimensional space. For analytical simplicity we take the space to
be a unit torus, and use the additive model for the connectivity relation.

wi +w j

r2 ≥ θn. (3)

Certain of our techniques may be generalized to other cases in a straightforward manner.
Finally, we impose the following relatively weak conditions on the weight distribution
f (w): (1) a finite mean µ = E[w] and (2) a finite variance σ2 = E[w2]−E[w]2. Some
examples of GTG instances with exponential weight distribution f (w) = e−w are shown
in Figure 1.

The paper is organized as follows. We first state a basic property concerning the
degree distribution of GTGs. In Section 4, Theorems 1 and 2 provide bounds on θn for
the absence and the existence of a giant component. Similarly, in Section 5, Theorems 3
and 4 provide bounds on θn for the graph being disconnected and connected. Section 6
gives upper bounds on the diameter, along with simulation results. Finally, in Section 7
we calculate the clustering coefficient, and discuss certain of its properties.

3 Degree Distribution

We start by stating the degree distribution in our GTG model. Let the position vector
of the nodes be x and the weight vector be w. W.l.o.g. let us consider node v1. It is
straightforward to show that the probability of v1 having degree k, given weights w, is

Pr[d1 = k|w] =
(

n−1
k

) k+1

∏
i=2

Area(B(xi,ri1))
n

∏
j=k+2

(1−Area(B(x j,r j1))), (4)

where Area(B(xi,ri1)) is the area of the ball at center xi with radius ri1, and due to (3)
the radii are given by

ri1 =
√

w1 +wi

θn
(5)

for i = 2, . . . ,n. After marginalization, it follows

Pr[d1 = k|w1] =
( n

∏
i=2

Z
wi

f (wi)dwi

)
Pr[d1 = k|w]

=
(

n−1
k

)(Z
w

f (w)
π(w1 +w)

θn
dw

)k(
1−

Z
w

f (w)
π(w1 +w)

θn
dw

)n−1−k

=
(

n−1
k

)(
π(w1 +µ)

θn

)k(
1− π(w1 +µ)

θn

)n−1−k
. (6)

That is, the degree distribution di, of a node vi with weight wi, follows the Binomial
distribution

di(·|wi)∼ Bin(n−1, pi) (7)

where
pi =

π

θn
(wi +µ). (8)
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Fig. 1. Instances of GTG with exponential weight distribution, for n = 300 at decreasing threshold
parameter values (increasing mean degree): (a) θn/n = 2π, well below the percolation transition;
(b) θn/n = 1, above the percolation but below the connectivity transition; (c) θn/n = 1/2e, well
above connectivity.



The Structure of Geographical Threshold Graphs 5

4 Giant Component

Definition 1 (Giant Component). The giant component is a connected component
with size Θ(n).

In this section we analyze the conditions for the existence of the giant component,
giving bounds on the threshold parameter value θn where it first appears. For θn = cn,
we specify positive constants c′ > c′′ and prove that whp (with probability 1−o(1)), if
c > c′ the giant component does not exist whereas if c < c′′ the giant component exists.

We do not prove that there is a zero-one law governing the emergence of the giant
component. However, given that the the probability of a giant component is 0 above c′

and 1 below c′′, it would be rather surprising if the transition were not a sharp one.

4.1 Absence of Giant Component

Theorem 1. Let θn = cn for c > c′, where c′ = 2πµ. Then whp there is no giant com-
ponent in GTG.

Proof. We start by introducing a slightly different GTG model from our usual one. Con-
sider the space of possible node positions and weights, S = {(x,y,w) : x,y ∈ [0,1],w ≥
0}. In the model we have already defined, we place n nodes in S, leading to a binomial
degree distribution: call this the Binomial GTG. Let us now instead place nodes in S
according to a spatial Poisson process with rate n f (w), so that the expected number of
nodes is n: call this the Poisson GTG. We will prove that the Poisson GTG does not
have a giant component. It is straightforward to see that if the Binomial GTG had a
giant component with nonvanishing probability, the analogous Poisson GTG would as
well. Thus, the Binomial GTG cannot have a giant component either.

The proof’s approach is similar to one given in [AS00]. Divide the nodes into three
classes: alive, dead and neutral. Denote the number of alive nodes as Yi. Now apply the
following algorithm. At time t = 0, designate one node (picked u.a.r.) as being alive
and all others as neutral. At each subsequent time step t, pick a node vt u.a.r. from
among those that are alive, and then consider all neutral nodes connected to vt . Denote
the number of these nodes as Zt . Change these nodes from neutral to alive, and change
vt itself from alive to dead. The random variables Yi,Zi satisfy the following recursion
relation: Y0 = 1 and Yt = Yt−1 +Zt −1, for t ≥ 1. The number of alive nodes satisfies

Yt −1 =
t

∑
i=1

Zi− t. (9)

Since neutral nodes are by definition those that have not yet been explored by the
algorithm, the Zi are independent random variables. We formalize this argument as
follows. For a node vi = (xi,yi,wi), define Si ⊆ S as the subspace of all positions and
weights of nodes that can be connected to vi, namely Si = {(x,y,w) : x,y ∈ [0,1],w ≥
0,(x− xi)2 +(y− yi)2 ≤ (w + wi)/θn}. At time t = 0, any node within S0 is a neutral
node connected to v0. But at a subsequent time step t, nodes within any Si for i < t have
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already been designated alive, so only those in

Bt = St \
t−1[
i=0

Si

can be neutral nodes connected to vt . Thus, the nodes figuring within Zt and Zt ′ , for any
two different time steps t and t ′, are drawn from disjoint subspaces Bt and Bt ′ . The Zi
are simply restrictions of the Poisson process to the Bi. Due to the memoryless nature of
the Poisson process, they are independent Poisson random variables. Given that Bi ⊆ Si
and the expected population of Si is npi with pi as defined in Eq. (8), Zi satisfies the
stochastic bound

Pr[Zi ≥ k]≤ Pr[Po(npi)≥ k]. (10)

Now consider nodes that are alive, and let T be the largest t such that Yt > 0. Then
T is the size of the component containing v0, and the giant component exists if and only
if T = Θ(n) with some nonvanishing probability. The variable T satisfies

Pr[T ≥ t] = Pr[Yt > 0] = Pr[Yt ≥ 1] = Pr[
t

∑
i=1

Zi ≥ t]≤ Pr[
t

∑
i=1

Po(npi)≥ t]. (11)

We take the threshold to be θn = cn. Since the sum of independent Poisson random
variables is itself Poisson distributed, we need to prove that Pr[Po(n∑

t
i=1 pi) ≥ t]→ 0

for t = Θ(n), for some c > 0. For any constant ε∈ (0,1), the following inequality holds:

Pr
[
Po(n

t

∑
i=1

pi)≥ t
]
≤ Pr

[
Po(n

t

∑
i=1

pi)≥ t
∣∣∣ t

∑
i=1

wi ∈ (1± ε)tµ
]
+Pr

[ t

∑
i=1

wi /∈ (1± ε)tµ
]
.

(12)
We will bound the first right-hand term using the concentration of Poisson random

variables [Pen03]. To maximize the conditional probability, set ∑wi = (1 + ε)tµ, and
then let λ = n∑

t
i=1 pi = (2 + ε)atµ where a = nπ/θn = π/c. Now, given any constant

γ ∈ (0,1), for t → ∞, i.e., λ→+∞, it follows that

Pr[Po(λ) /∈ (1± γ)λ]≤ e−λH(1−γ) + e−λH(1+γ) → 0, (13)

where the function H(x) = 1−x+x logx, for x > 0. It is now sufficient to choose c large
enough that t > (1 + γ)λ, which occurs when c > (2 + ε)(1 + γ)πµ. It follows that for
any c > 2πµ, ε and γ can be set so that the first right-hand term in Eq. (12) goes to zero.

Now consider the second right-hand term. By the central limit theorem, (∑wi −
tµ)/(

√
tσ) tends to the normal distribution N(0,1) as t → ∞, so

Pr
[ t

∑
i=1

wi /∈ (1± ε)tµ
]

= Pr
[

∑wi− tµ√
tσ

/∈ (−ε,ε)
√

t
µ
σ

]
→ 0 (14)

for any constant ε.
Thus, for c > 2πµ, the probability that T = Θ(n) goes to zero, and so there is no

giant component. ut
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4.2 Existence of Giant Component

Theorem 2. Let θn = cn for c < c′′ = supα∈(0,1) αF−1(1−α)/λc, where πλc ≈ 4.52
is the mean degree at which the giant component first appears in Random Geometric
Graphs (RGG) [Pen03]. Then whp the giant component exists in GTG.

Proof. For any constant α ∈ (0,1), we prove that whp there are αn “high-weighted”
nodes, all with weights greater than or equal to some sn; we state sn later. Let Xi be the
indicator of the event wi ≥ sn. Then Pr[Xi = 1] = 1−F(sn) =: q. Let X = ∑

n
i=1 Xi be

the number of high-weighted nodes. Using the Chernoff bound Pr[X ≤ (1−δ)E[X ]]≤
exp(−E[X ]δ2/2), with δ = 1−α/q,

Pr[X ≤ αn] = Pr[X ≤ (1−δ)E[X ]]≤ exp
(
−n(q−α)2/(2q)

)
= n−γ (15)

for some constant γ > 1 satisfying (q−α)2 = 2qγ logn/n. Solving that quadratic equa-
tion in q gives q = α + Θ(logn/n), so F(sn) = 1− q = 1−α−Θ(logn/n). For any
ε > 0 and n sufficiently large the following is satisfied

F−1(1−α)≥ sn ≥ F−1(1−α− ε). (16)

Thus, let us define the sequence sn by its limit

sn → F−1(1−α) = Θ(1). (17)

Now we consider the set of αn high-weighted nodes. For each such node vi with weight
wi, define its characteristic radius to be

r2
t (wi) = wi/θn. (18)

Then it follows that any other high-weighted node v j within this radius is connected to
vi, since the connectivity relation is satisfied:

(wi +w j)/r2 ≥ wi/r2
t = θn. (19)

Let θn = cn, where c < αF−1(1−α)/λc. For the radius rt , whp it follows

r2
t (wi) =

wi

θn
≥ sn

θn
>

λc

αn
. (20)

Let us therefore consider small circles, with a fixed radius r0 s.t.
√

sn/θn > r0 >√
λc/(αn), around each of these αn nodes. A subgraph of this must be a RGG with

mean degree > πλc, which whp contains a giant component. Since its size is Θ(αn) =
θn, it is a giant component of the GTG too. We may optimize the bound by taking the
supremum of c over α ∈ (0,1), and the theorem follows. ut

4.3 Comparison of Upper and Lower Bounds

We again stress that we have not proven a zero-one law for the emergence of the giant
component. If a sharp transition does indeed exist, c′ and c′′ provide bounds on its
location. Here we consider the size of the gap between the two bounds.
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Claim. For any weight distribution f (w), c′/c′′ ≥ 2πλc ≈ 9.04.

Proof. First consider c′ = 2πµ. Using the telescope formula, µ satisfies

µ =
Z

∞

0
(1−F(y))dy. (21)

Now consider c′′ = supα∈(0,1) αF−1(1−α)/λc. We have F : [0,+∞) → [0,1). Since
F is a bijection, the inverse F−1 : [0,1] → [0,+∞) exists. Let x = F−1(1−α), and
consequently α = 1−F(x). Then

sup
α∈(0,1)

αF−1(1−α) = sup
x∈(0,∞)

x(1−F(x)). (22)

Define the function

g(x) =
Z x

0
(1−F(y))dy− x(1−F(x)). (23)

Since g′(x) = x f (x)≥ 0 and g(0) = 0, we know that g(x)≥ 0 for every x≥ 0. Let x0 be
the value at which x(1−F(x)) has its supremum. Then,

µ− sup
α∈(0,1)

αF−1(1−α) =
Z

∞

0
(1−F(y))dy− x0(1−F(x0))≥ g(x0)≥ 0, (24)

from which the claim follows. ut

Remark 1. For the exponential distribution f (w) = γexp(−γw), c′ = 2π/γ.

Remark 2. If αF−1(1−α) has an extremum for α ∈ (0,1), this occurs at

α = F−1(1−α) f (F−1(1−α)). (25)

For example, for the exponential distribution the maximum is at α = 1/e, giving a bound
of c′′ = 1/eγλc.

Remark 3. Given the recent bound [KY06] λc ≥ 4/(3
√

3) for RGG, c′′≤ supα∈(0,1) αF−1(1−
α)3

√
3/4. For the exponential distribution this gives a bound of c′′ ≤ 3

√
3/4eγ.

5 Connectivity

Definition 2 (Connectivity). The graph on n vertices is connected if the largest com-
ponent has size n.

In this section we analyze conditions for connectivity, giving bounds on the thresh-
old parameter θn at which the entire graph first becomes connected. Similarly to our
approach in the case of the giant component, for θn = cn/ logn, we specify positive
constants c′ > c′′ and prove that whp, if c > c′ the graph is disconnected whereas if
c < c′′ the graph is connected.

As in the case of the emergence of the giant component, it seems likely but has not
been proven that there is a sharp phase transition at which GTGs become connected.
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5.1 Disconnected Graph

Theorem 3. Let θn = cn/ logn, where c > πµ. Then the GTG is disconnected whp.

Proof. For a node vi, let Yi be the indicator of the event that vi is isolated. We will
consider the sum

Y =
n

∑
i=1

Yi (26)

and show that Pr[Y = 0]→ 0. It will then follow that whp there is at least one isolated
node and so the graph is disconnected.

From the binomial degree distribution in Eq. (6), the probability that vi is isolated,
conditional on wi, is

Pr[Yi = 1|wi] =
(

1− wi +µ
θn

π

)n−1
. (27)

Now define

p ≡ E[Yi] = Pr[Yi = 1]

=
Z

f (wi)
(

1− wi +µ
θn

π

)n−1
dwi. (28)

Applying the second moment method,

Pr[Y = 0] ≤ Var[Y ]
E[Y ]2

=
∑i Var[Yi]+∑i6= j Cov[Yi,Yj]

(np)2 . (29)

The variance and covariance are given by

Var[Yi] = E[Y 2
i ]−E[Yi]2 = p− p2 (30)

Cov[Yi,Yj] = E[Yi,Yj]−E[Yi]E[Yj] = Pr[Yi = 1,Yj = 1]− p2, (31)

so

Pr[Y = 0] ≤
n(p− p2)+n(n−1)(Pr[Yi = 1,Yj = 1]− p2)

(np)2

<
1

np
+

Pr[Yi = 1,Yj = 1]
p2 −1. (32)

Let us first consider the 1/(np) term. Let θn = c n
logn , where c is a constant. We

claim that if c > πµ, then 1/(np) → 0. To see this, let ζ be any positive constant that
satisfies c > π(µ+ζ). We have

p =
Z

f (w)
(

1− w+µ
θn

π

)n−1
dw

≥
Z

ζ

0
f (w)

(
1− w+µ

θn
π

)n−1
dw
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≥ F(ζ)
(

1− µ+ζ

θn
π

)n−1

= F(ζ)
(

1− µ+ζ

cn
π logn

)n−1

= F(ζ)n−(µ+ζ)π/c(1+o(1)).

Therefore, if c > π(µ+ζ), pn≥ F(ζ)ω(n) and so 1/(np)→ 0 for n→ ∞.
Next, we will show that Pr[Yi = 1,Yj = 1]/p2 = o(1). Consider the joint probability

conditional on a set of weights w. Denoting the neighborhood relation by vi ∼ v j,

Pr[Yi = 1,Yj = 1|w] = Pr[vi � v j,
\

k 6=i, j

vi � vk,v j � vk|w]

= Pr[vi � v j|wi,w j]Pr[
\

k 6=i, j

vi � vk,v j � vk|vi � v j,w]

= Pr[vi � v j|wi,w j] ∏
k 6=i, j

Pr[vi � vk,v j � vk|vi � v j,w]. (33)

We now use the easily verified property that given events Q, R and S that depend on w,

Pr[Rc,Sc|Qc,w] = 1−Pr[R|w]−Pr[S|w]+ (1−Pr[Q|R,S,w])
Pr[R,S|w]
Pr[Qc|w]

. (34)

Let a = Pr[vi ∼ v j|wi,w j], b = Pr[vi ∼ vk|wi,wk], c = Pr[v j ∼ vk|w j,wk] and define the
clustering coefficient

C = Pr[vi ∼ v j|vi ∼ vk,v j ∼ vk,wi,w j,wk]. (35)

Then,

Pr[Yi = 1,Yj = 1|w] = (1−a) ∏
k 6=i, j

[
1−b− c+(1−C)

bc
1−a

]
. (36)

Note that a = (wi +w j)π/θn, and similarly for b and c.
In Section 7.1, we show (Lemma 2) that if wi,w j,wk ≤ ŵ = (1− 3

√
3/4π)θn/2π,

then C ≥ a. Thus, under those conditions,

1−b− c+(1−C)
bc

1−a
≤ 1−b− c+bc

= (1−b)(1− c). (37)

Now average Eq. (36) over all weights. It follows from the finite variance of f (w)
that for any constant M, F(Mθn) = 1−o(1/n), and so

Pr[Yi = 1,Yj = 1] =
Z

f (wi)dwi

Z
f (w j)dw j(1−a)

(Z
f (wk)dwk

[
1−b− c+(1−C)

bc
1−a

])n−2

=
Z ŵ

0
f (wi)dwi

Z ŵ

0
f (w j)dw j(1−a)

(Z ŵ

0
f (wk)dwk

[
1−b− c+(1−C)

bc
1−a

])n−2
(1+o(1))

≤
Z ŵ

0
f (wi)dwi

Z ŵ

0
f (w j)dw j(1−a)

(Z ŵ

0
f (wk)dwk(1−b)(1− c)

)n−2
(1+o(1))
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=
Z ŵ

0
f (wi)dwi

Z ŵ

0
f (w j)dw j

{
(1− π

θn
(wi +w j))×(Z ŵ

0
f (wk)dwk(1−

π

θn
(wi +wk))(1−

π

θn
(w j +wk))

)n−2}
=

Z ŵ

0
f (wi)dwi

Z ŵ

0
f (w j)dw j

{
(1− π

θn
(wi +w j))×(

1− π

θn
(wi +w j +2µ)+

π2

θ2
n
(wiw j +µ(wi +w j)+µ2 +σ

2)
)n−2}

. (38)

Now consider p2. Using the fact that µ, σ and 1/2− (ŵ+µ)π/θn are all Θ(1),

p2 =
Z

f (wi)dwi

Z
f (w j)dw j(1−

π

θn
(wi +µ))n−1(1− π

θn
(w j +µ))n−1

≥
Z ŵ

0
f (wi)dwi

Z ŵ

0
f (w j)dw j(1−

π

θn
(wi +µ))n−1(1− π

θn
(w j +µ))n−1 (39)

=
Z ŵ

0
f (wi)dwi

Z ŵ

0
f (w j)dw j

(
1− π

θn
(wi +w j +2µ)+

π2

θ2
n
(wiw j +µ(wi +w j)+µ2)

)n−1

=
Z ŵ

0
f (wi)dwi

Z ŵ

0
f (w j)dw j

(
1− π

θn
(wi +w j +2µ)+

π2

θ2
n
(wiw j +µ(wi +w j)+µ2 +σ

2)
)n−1

(1−o(1))

>
Z ŵ

0
f (wi)dwi

Z ŵ

0
f (w j)dw j

(
1− π

θn
(wi +w j +2µ

)
×(

1− π

θn
(wi +w j +2µ)+

π2

θ2
n
(wiw j +µ(wi +w j)+µ2 +σ

2)
)n−2

(1−o(1))

=
Z ŵ

0
f (wi)dwi

Z ŵ

0
f (w j)dw j

(
1− π

θn
(wi +w j)

)
×(

1− π

θn
(wi +w j +2µ)+

π2

θ2
n
(wiw j +µ(wi +w j)+µ2 +σ

2)
)n−2

(1−o(1)). (40)

Finally, this gives the desired ratio

Pr[Yi = 1,Yj = 1]
p2 < 1+o(1). (41)

By the second moment method it then follows that Pr[Y = 0] < o(1). ut

5.2 Connected Graph

Theorem 4. Let θn = cn/ logn for c < supα∈(0,1) αF−1(1− α)/4. Then the GTG is
connected whp.

Proof. The proof is divided into two parts. In the first part, we prove that a constant
fraction of nodes αn are connected. In the second part we prove that the rest of the
(1−α)n nodes are connected to the first set of αn nodes.
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First part: Invoking the proof of the appearance of the giant component, there are
αn nodes all with weights ≥ sn → F−1(1−α) = Θ(1).

Let θn = cn/ logn, where c < αF−1(1−α)π. Analogously to rt , define the connec-
tivity radius rc

r2
c(wi) =

wi

θn
≥ sn

θn
>

logn
απn

. (42)

Similarly to Theorem 2 let us consider small circles around each of these αn nodes, and
consider these nodes as a RGG. It is known that rn =

√
logn/(πn) is the connectivity

threshold in RGG [GK98]. The connectivity of RGG implies the connectivity of these
αn nodes in our GTG.

Second part: Color the αn high-weighted nodes blue, and the remaining (1−α)n
nodes red. Now let us tile our space into n/(c0 logn) squares of size c0 logn/n. We
state c0 later. Consider any square Si, and let Bi be the number of blue nodes in Si. In
expectation there are E[Bi] = αc0 logn blue nodes in each square. From the Chernoff
bound it follows

Pr[Bi ≥ (1−δ)αc0 logn] ≥ 1−n−αc0δ2/2. (43)

Let us consider one red node r. The node r belongs to some square Si. Let Mr be the
event that the red node r is connected to some blue node b ∈ Si. Let the weights of r,b
be wr,wb, respectively. The probability of the complement of Mr, conditioned on there
being at least one blue node in Si, is given by

Pr[Mc
r |Bi ≥ 1] = Pr[wr +wb ≤ r2

θn] ≤ Pr[wr +wb ≤ 2c0
logn

n
c

n
logn

]

= Pr[wr +wb ≤ 2c0c]. (44)

As long as F−1(1− α) > 2c0c, wb > 2c0c and hence Pr[Mc
r |Bi ≥ 1] = 0. For large

enough n it must hold that (1−δ)αc0 logn > 1, and so from Eq. (43),

Pr[Mc
r ] ≤ Pr[Mc

r |Bi ≥ (1−δ)αc0 logn]+Pr[Bi < (1−δ)αc0 logn]

≤ 0+n−αc0δ2/2. (45)

If αc0δ2/2≥ 1+ ε for some ε > 0, then by the union bound,

Pr[
[
r

Mc
r ]≤∑

r
Pr[Mc

r ]≤ (1−α)nn−(1+ε) = (1−α)n−ε. (46)

Finally, the probability that all red nodes are connected to the set of blue nodes is given
by the following relation

Pr[
\
r

Mr] = 1−Pr[
[
r

Mc
r ]≥ 1− (1−α)n−ε → 1. (47)

The requirements we have imposed on constants so far are: c < αF−1(1−α)π, c <
F−1(1−α)/(2c0) and αc0 ≥ 2(1+ ε)/δ2. These conditions combine to give

c < αF−1(1−α)min(π,
δ2

4(1+ ε)
). (48)
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Since α ∈ (0,1), δ ∈ (0,1) and ε > 0 are arbitrary, we obtain

c < sup
α∈(0,1)

αF−1(1−α)/4. (49)

ut

6 Diameter

In this section we analyze the diameter of GTG, and provide an upper bound on it. In
the design of large networks, such as the Internet, wireless networks, etc., it is desir-
able to achieve low latency in the graph (i.e., the hop-count between any pair of nodes
in the network is small). In other words, a graph with a small diameter is desired. We
give conditions on the threshold function θn such that the graph has a desired diam-
eter in general. Furthermore, we derive conditions on θn, in terms of the cumulative
distribution function on weights F(w), such that diam belongs to the specific classes
diam = O(1), diam = O(logq n) and diam = O(

√
n/ logn). These correspond to an

ultra-low, low and high latency network, respectively. For these three classes, we give
the exact expressions on θn in the case of the exponentially distributed weights. Note
that all of these classes correspond to denser graphs than those we have considered so
far, i.e., with θn scaling as o(logn/n) vs. the Θ(logn/n) scaling for connectivity.

Let u and v be two arbitrary nodes. Construct a sequence of adjacent squares S1,S2, . . . ,SO(1/x),
of size x×x, linking u and v, such that u and v are the centers of the first and last squares
respectively4 (see Fig. 2). The geometric distance between any two nodes is r ≤ Θ(1).
Thus, there are O(1/x) squares on the straight path u− v in total.

Fig. 2. Illustration of our diameter proof technique: a sequence of adjacent squares of size x× x
link an arbitrary pair of nodes u and v in a unit-area disc.

4 The centers of the squares lie on the straight line u− v.
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Let Vi be the number of nodes that lie within the square Si, for i = 1,2, . . . ,O(1/x).
We have E[Vi] = nx2. Using the Chernoff bound, the following is satisfied

Pr[Vi ≤ (1−δ)E[Vi]]≤ e−E[Vi]δ2/2. (50)

Taking δ = 1/2, we get Pr[Vi ≤ nx2/2] ≤ e−nx2/8, i.e., in each square Si, there are at
least nx2/2 nodes whp.

Let Mi be the event that in a square Si, there is at least one node with weight w≥ sn.
We will specify sn later. Now, we derive a lower bound on the probability Pr[Mi]. This
probability is greater than the probability conditioned on the event that there are at least
nx2/2 nodes in Si, i.e.

Pr[Mi] ≥ Pr[Mi|Vi ≥ nx2/2]Pr[Vi ≥ nx2/2]

≥ (1−Pr[W ≤ sn]nx2/2)(1− e−nx2/8)

= (1−F(sn)nx2/2)(1− e−nx2/8). (51)

We now explain how we choose sn such that any two neighboring squares S j and
S j+1 are connected by an edge (i.e., there are two connected nodes a∈ S j and b∈ S j+1).
Let weights of a and b be w and w′, respectively. We showed that in any square Si there is
at least one node with weight ≥ sn, whp. We want that the connectivity relation Eq.(1)
for nodes a and b is satisfied. Maximal distance ||a− b|| between a pair of nodes is
||a− b|| ≤ x

√
5. Conditioned on the events that weights w,w′ are greater then sn we

have the following relation for the connectivity of nodes a and b

Pr[a∼ b|w,w′ ≥ sn]≥ Pr[2sn/r2 ≥ θn]. (52)

Let us choose sn = Θ(x2θn). If an arbitrary pair of nodes (u,v) is connected by a path of
nodes belonging to the squares S1,S2, . . . ,SO(1/x), then the following relation on diam
is satisfied

Pr[diam = O(1/x)]≥ Pr[∩O(1/x)
i=1 Mi]

=
(
(1− e−nx2/8)(1−F(sn)nx2/2

)O(1/x)
,

since the nodes, as well as weights, are distributed independently. Now, the lemma on
the diameter follows.

Lemma 1. Let the cumulative weight distribution function be F(w) in GTG model. Let
x and a sequence sn = Θ(x2θn) be such that

lim
n→∞

(
1−F(sn)nx2/2

)1/x
= 1. (53)

Then, whp diam = O(1/x).

Proof. Proof follows from the previous discussion.
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6.1 Some Classes of Diameter

We now analyze and state conditions on θn such that diam = O(1), diam = O(logq n)
and diam = O(

√
n/ logn). We work out the case when the weight distribution is expo-

nential, f (w) = e−w,w≥ 0, (i.e., F(w) = 1−e−w,w≥ 0) and derive an upper bound on
the threshold function θn in this particular case. For some other weight distribution, the
analysis would be similar. Our results are given by:

1. Ultra-low Latency: diam = O(1). Let x < 1 be a constant and sn = θn. If F(θn)n →
0, then diam = O(1) whp. For the exponential weight distribution it follows that
θn = o(logn).

2. Low Latency: diam = O(logq n). Let x = 1/ logq n and sn = θn/ log2q n. If

F(θn/ log2q n)
n

2log2q n logq n → 0, then diam = O(logq n) whp. For the exponential
weight distribution it follows that θn = o

(
(logn)2q(1−(log2q n)/n)

)
.

3. High Latency: diam = O(
√

n/ logn). Let x =
√

logn/n and sn = θn logn/n. If√
n/ lognF(θn logn/n)logn → 0, then diam = O(

√
n/ logn) whp. For the expo-

nential weight distribution it follows that θn = o
(
(n/ logn)1−1/(2logn)

)
.

Here we prove the previous claims.

Ultra-low Latency: diam = O(1). For the diameter to be a constant, let x < 1 be
a constant. Invoking Lemma 1, it follows that diam = O(1) whp if and only if 1−
F(sn)nx2/2 → 1, i.e., if and only if F(sn)n → 0. The condition on the size of diam is
given by the following claim, and we can derive θn such that diam = O(1) whp.

Claim. If F(θn)n → 0, then diam = O(1) whp.

For the exponential weight distribution it follows that F(θn)n = (1− e−θn)n → e−n/eθn .
The last equation tends to 0 if and only if n/eθn → ∞. That is,

Claim. For the exponential weight distribution f (w) = e−w, the diameter in GTG is
diam = O(1) if θn = o(logn).

Low Latency: diam = O(logq n). Let us choose x = 1/ logq n. Invoking Lemma 1, we
obtain:

(1−F(sn)nx2/2)1/x =
(

1−F(sn)
n

2log2q n
)logq n

(54)

For sn → 0, the last expression tends to 1, if and only if

F(sn)
n

2log2q n logq n→ 0, (55)

by using limt→+∞(1− 1/t)t = 1/e. The condition on the size of diam is given by the
following claim.

Claim. if F(θn/ log2q n)
n

2log2q n logq n→ 0, then diam = O(logq n) whp.
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For the exponential weight distribution, the following is to be satisfied

F(sn)
n

2log2q n logq n = logq n(1− e−sn)
n

2log2q n → sn/(2log2q n)
n logq n→ 0, (56)

or equivalently

sn = o
(
(logn)−

2q
n log2q n)

)
. (57)

Claim. For the exponential weight distribution f (w) = e−w, the diameter in GTG is
diam = O(logq n) if θn = o

(
(logn)2q(1−(log2q n)/n)

)
.

High Latency: diam = O(
√

n/ logn). Let us choose x =
√

logn/n. Invoking Lemma
1, we get

(1−F(sn)nx2/2)1/x = (1−F(sn)logn)
√

n
logn (58)

It can be shown that the last expression tends to 1 if and only if
√

n/ lognF(sn)logn → 0,
by using limt→+∞(1− 1/t)t = 1/e. The condition on the size of diam is given by the
following claim.

Claim. If
√

n/ lognF(θn logn/n)logn → 0, then diam = O(
√

n/ logn) whp.

For the exponential weight distribution, the following is to be satisfied√
n/ lognF(sn)logn =

√
n/ logn(1− e−sn)logn →

√
n/ lognsn

logn → 0, (59)

or equivalently

sn = o
(
(logn/n)1/(2logn)

)
. (60)

Claim. For the exponential weight distribution f (w) = e−w, the diameter in GTG is
diam = O(

√
n/ logn) if θn = o

(
(n/ logn)1−1/(2logn)

)
.

Simulation results are shown for the GTG with path-loss exponent β = 3 (not β =
2), for the case of diam = O(log1.5 n) in Fig. 3 and diam = O(

√
n/ logn) in Fig. 4.

Exponentially distributed weights with mean 1 are used. The network sizes simulated
are n = {100,200,500,1000,2000,10000}. The threshold values θn for the two cases
are obtained by invoking previous claims.

7 Clustering Coefficient

7.1 Weights Given

Let us consider in more detail the clustering coefficient defined in Section 5, namely
the neighbor probability

C(wi,w j,wk) = Pr[vi ∼ v j|vi ∼ vk,v j ∼ vk,wi,w j,wk]. (61)
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Fig. 3. (a) For the case of diam = O(logq n), with q = 1.5, the analytical solid curve is the upper
bound on diam(n). Simulation results match with theoretical predictions, since the simulation
points all lie below the analytical curve.
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Fig. 4. (b) For the case of diam = O(
√

n/ logn), the solid curve plots the upper bound on diam(n),
and this bound closely matches the experimental values.
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Let x =
√

(wi +w j)/θn, y =
√

(w j +wk)/θn and z =
√

(wi +wk)/θn. Then, if di j
represents the distance between points i and j,

C(wi,w j,wk) = Pr[di j ≤ x|d jk ≤ y,dik ≤ z]

=
1

πz2

Z z

0
Pr[di j ≤ x|d jk ≤ y,dik = r]2πr dr

=
1

π2y2z2

Z z

0
A(r)2πr dr (62)

where A(r) is the overlap area of a disc of radius x, centered at i, and a disc of radius
y, centered at k. Now consider a triangle 4ABC, with sides AB = r, AC = x, BC = y,
∠CAB = α, ∠ABC = β. Following arguments similar to those in [DC02], there are three
possible cases for A(r):

A(r) =


π[min(x,y)]2 r ≤ |x− y|
x2(α− sinαcosα)+ y2(β− sinβcosβ) |x− y|< r < x+ y

0 r ≥ x+ y

(63)

where

α = cos−1
( r2 + x2− y2

2xr

)
, β = cos−1

( r2− x2 + y2

2yr

)
. (64)

From the definitions of x, y and z, |x− y|< z < x + y. After some algebraic manip-
ulation, one then finds

C =
x2

π

[ 1
y2 cos−1

( z2 + x2− y2

2xz

)
+

1
x2 cos−1

( z2− x2 + y2

2yz

)
+

1
z2 cos−1

(x2 + y2− z2

2xy

)
−

x2 + y2 + z2

4x2y2z2

√
2x2y2 +2x2z2 +2y2z2− x4− y4− z4

]
=

1
π(wi +wk)(w j +wk)

{
(wi +w j)(wi +wk)cos−1

( wi√
wi +w j

√
wi +wk

)
+

(wi +w j)(w j +wk)cos−1
( w j√

wi +w j
√

w j +wk

)
+

(wi +wk)(w j +wk)cos−1
( wk√

wi +wk
√

wi +wk

)
−

(wi +w j +wk)
√

wiw j +w jwk +wkwi

}
.

Note that while C is a function of the weights wi, w j and wk, it is independent of θn. This
reflects a similar property in random geometric graphs [DC02], where the clustering
coefficient is independent of the graph’s mean degree.

Written in terms of the connection probabilities a, b and c defined in Theorem 3, C
is given by

Cπbc = abcos−1 a+b− c
2
√

ab
+bccos−1 −a+b+ c

2
√

bc
+ cacos−1 a−b+ c

2
√

ac
−

a+b+ c
4

√
2ab+2ac+2ca−a2−b2− c2. (65)



The Structure of Geographical Threshold Graphs 19

We now prove the bound on the clustering coefficient that we needed for Theorem 3.

Lemma 2. If wi,w j,wk ≤ ŵ = (1−3
√

3/4π)θn/2π then C ≥ a.

Proof. Define

S(a,b,c) =
Cπ

a

=
1
a

cos−1 −a+b+ c
2
√

bc
+

1
b

cos−1 a−b+ c
2
√

ac
+

1
c

cos−1 a+b− c
2
√

ab
− γ

a+b+ c
4abc

,

where

γ =
√

2ab+2ac+2ca−a2−b2− c2

= 2
√

bc

√
1−

(−a+b+ c
2
√

bc

)2
(66)

It is easy to verify that S = π when wi = w j = wk = ŵ. We will now show that S is
nonincreasing over the weights, and thus S ≥ π for all smaller values of wi,w j,wk.

Consider the sign of the derivative

dS
dwi

=
∂S
∂a

∂a
∂wi

+
∂S
∂b

∂b
∂wi

+
∂S
∂c

∂c
∂wi

=
π

θn

(
∂S
∂a

+
∂S
∂b

)
. (67)

Since S is symmetric in a and b, it is sufficient to consider the sign of ∂S/∂a:

∂S
∂a

=
γ

4a2bc
(−a+b+ c)− 1

a2 cos−1 −a+b+ c
2
√

bc
. (68)

Now let
t =

−a+b+ c
2
√

bc
∈ [0,1]. (69)

Then,
∂S
∂a

=
1
a2 (t

√
1− t2− cos−1 t). (70)

Given the function ϕ(t) = t
√

1− t2−cos−1 t on [0,1], ϕ′(t) = 2
√

1− t2 ≥ 0 and ϕ(1) =
0. It follows that ∂S/∂a≤ 0, and so dS/dwi ≤ 0. Finally, S is symmetric in (wi,w j,wk),
so it must be nonincreasing over each of the weights and bounded below by the value
at wi = w j = wk = ŵ. ut

7.2 Degree Given

Define Cl to be the neighbor probability for a node with a given degree

Cl = Pr[vi ∼ v j|vi ∼ vk,v j ∼ vk,d(vk) = l]

=
Pr[vi ∼ v j,vi ∼ vk,v j ∼ vk,d(vk) = l]

Pr[vi ∼ vk,v j ∼ vk,d(vk) = l]

=
R

f (w)Pr[vi ∼ v j,vi ∼ vk,v j ∼ vk,d(vk) = l|w]dwR
f (w)Pr[vi ∼ vk,v j ∼ vk,d(vk) = l|w]dw

.
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A straightforward calculation shows that Cl is given by the ratio In/Id of two inte-
grals, where

Id =
Z

f (wk)
(

π

θn
(µ+wk)

)l(
1− π

θn
(µ+wk)

)n−l
dwk (71)

and

In =
Z Z Z

f (wi) f (w j) f (wk)πy2
πz2C(wi,w j,wk)dwidw j

×
(

π

θn
(µ+wk)

)l−2(
1− π

θn
(µ+wk)

)n−l
dwk

=
Z Z Z

f (wi) f (w j) f (wk)(wi +wk)(w j +wk)C(wi,w j,wk)dwidw j

× 1
(µ+wk)2

(
π

θn
(µ+wk)

)l(
1− π

θn
(µ+wk)

)n−l
dwk

(72)

For a specific weight distribution, these integrals may be evaluated numerically. It is
intuitive that when l is very large (l = Θ(n)), Cl should scale as 1/n: nodes that con-
nect to very many neighbors presumably do so because of their high weights, and their
neighbors are no more likely to be connected than any two random nodes are. Interest-
ingly, in the case shown in Fig. 5, Cl scales almost perfectly as l−1 even at relatively
small values of l. For an exponential weight distribution with mean 1 and parameters
n = 1000 and θn = 1000, the slope on the log-log plot already appears very close to −1
at l = 8.

8 Summary

Geographical threshold graphs are a rich model with the possibility of controlling struc-
tural properties by choosing specific weight distributions and tuning threshold values.
The model is a versatile one and can be used not only for the generation and analysis
of web-graphs or large complex networks, but more generally for relation graphs in a
large data set. If the data have a metric and can be mapped to nodes in Euclidean space,
much of the foregoing analysis applies: one may hope to control structural properties
of the data set by studying it as a GTG.

In this paper we have analyzed some of the structural properties of a GTG. Given
a node weight distribution f (w) and threshold θn, the degree distribution can be easily
calculated. We have given bounds on the threshold value θn guaranteeing the absence
and existence of the giant component. We have also given bounds on θn guaranteeing
a disconnected and connected graph, and provided upper bounds on the diameter for
sufficiently dense graphs. Finally, we have derived a formula for the clustering coeffi-
cient in terms of the weight distribution and threshold, as well as discussed the general
clustering coefficient for nodes with a given degree, and evaluated it numerically. Our
analysis has used the additive threshold function (wi +w j)/r2 ≥ θn for the connectivity
relation, but not all of our techniques require it. For this reason, many of the results may
be generalized to other threshold functions, other path-loss exponents and other spatial
dimensionality in a straightforward manner.
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Fig. 5. Clustering Coefficient vs. Degree L
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